

FUNCTIONAL RECOVERY OF LANGUAGE FUNCTIONS AFTER PERINATAL STROKE

Clément François Laboratoire Parole et Langage CNRS, AMU, ILCB

Dr. Antoni Rodriguez-Fornells

Dr. Laura Bosch

Dr. Alfredo Garcia-Alix

Dr. Pablo Ripollès

Critical periods of brain plasticity during early development

Critical periods of brain plasticity during early language development

Werker & Hensch. (2015). Ann. Rev. Psychol.

Critical periods of brain plasticity during early language development

Werker & Hensch. (2015). Ann. Rev. Psychol.

Reh et al. (2020). PNAS

Kuhl. (2004). Nature Reviews Neuroscience

Language network before birth

Dual-stream model of language processing

López-Barroso, D., & de Diego-Balaguer, R. (2017).

Dorsal pathway for language learning and production

Brauer et al., (2013). Brain & Language

Arcuate Fasciculus matures slowly (no termination in the IFG @ birth)

Lopez-Barroso et al. (2013). PNAS.

Catani & Bambini. (2014). Current Opinion in Neurobiology.

AF necessary for early audio-motor integration

Babling / Learning / Work. Mem.

AF integrity linked to word learning in adults

Perinatal Arterial Ischemic Stroke (PAIS)

- PAIS = stroke occurring between birth and 1 month of age
- Increasingly recognized form of neurological injury (Chabrier et al., 2011)
- Leading cause of congenital hemiplegia & epilepsy (Lee et al., 2005)
 - 60% cerebral palsy
 - 30-60 % epilepsy
 - 25 % language delays
 - 22% behavioral abnormalities
- Large variability in language recovery (Fuentes et al., 2014; Murias et al., 2014; Anderson et al., 2011).
- Deficits for complex cognitive/linguistic functions (Murias et al., 2014)

Impact of left stroke on language functions

- Induces aphasia in adults (Kümmerer et al, 2013)
- Sometimes induces developmental aphasia (Northam et al., 2018)
- Hypothesis for functional recovery after PAIS
 - Spared perilesional areas (Raja-Beharelle et al., 2010)

Impact of left stroke on language functions

- Induces aphasia in adults (Kümmerer et al, 2013)
- Sometimes induces developmental aphasia (Northam et al., 2018)
- Hypothesis for functional recovery after PAIS
 - Spared perilesional areas (Raja-Beharelle et al., 2010)
 - Cortical reorganization to the right (Newport et al., 2022)

homologous right regions "take over" language functions (Staudt et al., 2002; Lidzba & Krägeloh-Mann, 2005; Tillema et al., 2008)

(Newport et al., 2022, PNAS)

Impact of left stroke on language functions

- Induces aphasia in adults (Kümmerer et al, 2013)
- Sometimes induces developmental conduction aphasia (Northam et al., 2018)
- Hypothesis for functional recovery after PAIS
 - Spared perilesional areas (Raja-Beharelle et al., 2010)
 - Cortical reorganization to the right (Newport et al., 2022)

homologous right regions "take over" language functions (Staudt et al., 2002; Lidzba & Krägeloh-Mann, 2005; Tillema et al., 2008)

(François et al., 2021, Brain & Language)

What about the impact of PAIS on the Arcuate Fasciculus? Very few studies at very young ages (i.e., before reading acquisition) No studies combining fMRI, DTI and rs-fMRI No studies assessing word-learning abilities

Impact of early brain damage on language functions

Neuropsychological assessment (@ 42 months)

- NEPSY-II
- Peabody Picture Vocabulary Test
- Phonological Development & Expressive Language complexity
- Word-learning ability: Fast Mapping task

Neuroimaging data (@ cca 42 months)

Structural

- High-resolution T1 and T2
- FLAIR
- DTI (29 directions, 1 x 1 x 2.5 mm3)

Functional

- Passive story-listening task
- Resting state

Impact of early brain damage on language functions

Table 1. Children demographic data and lesions main features.

Patient code	Age at test (months)	Gender	Gestational age at birth (weeks)	Birth weight (g)		Age of MRI diagnostic (days)	Vascular territory	Stroke Volume at birth (mL)	Motor impairment (Hemiplegia)	Epilepsy*
L1	48	M	41	3160	Clonic Seizures at 12 hours	4 days	M2 L	18890	No	No
L2	48	F	41	2960	Clonic Seizures at 26 hours	10 days	M4 L	47428	Si	No
L3	50	М	40	3560	Clonic Seizures at 48 hours	20 days	M1 Post-bifurcation L	17588	No	No
L4	41	F	41	2600	Clonic Seizures at 18 hours	4 days	M2 sup L	27882	No	No
L5	42	M	39	3340	Clonic Seizures at 24 hours	5 days	M1 Post-bifurcation L	36512	No	No
L6	49	M	40	3025	Clonic Seizures at 41 hours	5 days	M1 Post-bifurcation L	23509	Si	No
L/R1	41	M	39	3000	Clonic Seizures at 16 hours	8 days	M3 bilateral post	30637	No	No
L/R2	41	М	39	3240	Clonic Seizures at 24 hours	6 days	M1 Post-bifurcation R & M4 sup L	15332	No	No
R1	41	М	41	3045	Clonic Seizures at 72 hours	5 days	M2 sup R	7063	Si	No

^{*} Epilepsy = at least two recurrent and unprovoked seizures.

Cognitive and linguistic outcomes

Phonological development & expressive complexity from children's spontaneous production

Functional activations despite sedation...

Deterministic tractography of dorsal and ventral pathways

Virtual in vivo dissections

- Pre-processing with FSL FNIRT / Cost-function masking / LONI LPBA40 brain atlas
- Fiber orientation distributions obtained with **StarTrack** using spherical deconvolution
- Trackvis for reconstructing the 3 segments of the AF, UF, IFOF, ILF (Catani et al. 2007)
- DTI data from 10 age-matched controls (Richards et al., 2015)

Transfer of language functions to the right hemisphere

Mecanism of functional recovery

François et al., 2019, eNeuro

Evaluating novel word learning abilities

Referent selection

(8 trials, 4 with one new, 4 with familiar only)

Gomi

Glasses

Dog

Cow

Flas

Duck

Kufeta

Car

Immediate recall (8 trials)

2 novel objects / 1 fam.

Highly supportive instructions to maximize word learning

"Yes, this is a "flas". The "flas" is small and it makes some noise. Can you name it?"

Where is the Gomi?

concept with minimal exposure to it.

Novel word learning abilities and PAIS

No deficit in mapping but impaired in delayed recall test only

Negative impact of PAIS on memory processes involved during Fast Mapping?

Conclusions

- Relevance of small N designs for studying rare pathological populations
- Functional and structural lateralization of language functions to the right linked to language production @ 3.5 yo
- Memory deficits during the FM task @ 3.5 yo \rightarrow "Grow into your deficit hypothesis"?
- Inter-hemispheric plasticity based on structural and functional hyperconnectivity as a viable recovery mechanism for functional recovery after PAIS??
- Multimodal neuroimaging & behavioural studies to better understand the impact of early brain lesions and dysmaturities on complex cognitive functions
- Role of additional variables (type of stroke, sex, lesion size/location)?

THANK YOU ©

Clément François Laboratoire Parole et Langage CNRS, AMU, ILCB

